Exercice 1 (5 points)

Dans cet exercice, aucune justification n'est attendue.

Compléter :

VERSION 1

1)	Chiffre des centièmes dans 12 789,036	3
2)	4,2 h	4 h 12 min
3)	Ecriture scientifique de $78,924 \times 10^{-3}$	7,8924 × 10 ⁻²
4)	$\frac{10^4 \times 10^{-7}}{10^3}$ sous forme d'une puissance de 10	10-6
5)	13 ²	169

VERSION 2

1)	Chiffre des centièmes dans 21 389,076	7
2)	4,3 h	4 h 18 min
3)	Ecriture scientifique de $78,924 \times 10^{-4}$	$7,8924 \times 10^{-3}$
4)	$\frac{10^3 \times 10^{-7}}{10^4} \text{ sous forme}$ d'une puissance de 10	10-8
5)	14 ²	196

Exercice 2 (4 points)

1) $1 \mu m = 10^{-6} \text{ m et } 1 \text{ nm} = 10^{-9} \text{ m}$

Donc, un globule blanc est plus gros que le virus de la grippe.

2)
$$E = 12 \mu m \div 80 nm$$

$$E = \frac{12 \times 10^{-6}}{80 \times 10^{-9}}$$

$$E = \frac{12}{80} \times \frac{10^{-6}}{10^{-9}}$$

$$E = 0.15 \times 10^{3}$$

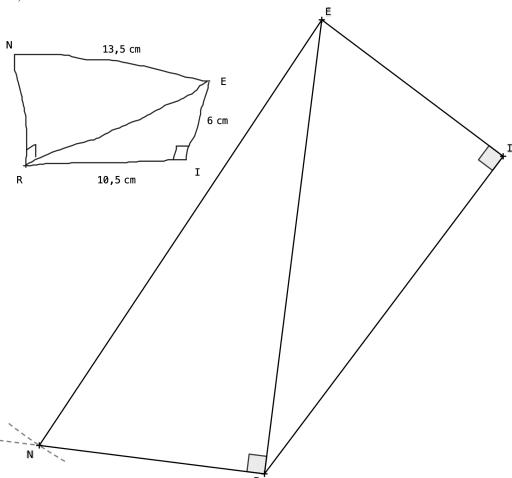
$$E = 150$$

Donc, le virus de la grippe est 150 fois plus petit qu'un globule blanc.

Exercice 3 (2 points)

Sur cette feuille, compléter le tableau suivant.

VERSION 1


VERSION			
Aire du carré	$\mathcal{A} = c^2$		
Aire du rectangle	$\mathcal{A} = \boldsymbol{L} \times \boldsymbol{I}$		
Aire du parallélogramme	$A = b \times h$		
Aire du disque	$\mathcal{A}=\pi r^2$		

VERSION 2

, 2115101, 2			
Aire du rectangle	$\mathcal{A} = \underline{L} \times \underline{I}$		
Aire du disque	$\mathcal{A}=\pi r^2$		
Aire du carré	$A = c^2$		
Aire du parallélogramme	$\mathcal{A} = \mathbf{b} \times \mathbf{h}$		

Exercice 4 (8 points)

1)

2) RIE est un triangle rectangle en I, d'après le théorème de Pythagore :

$$RE^2 = RI^2 + IE^2$$

$$RE^2 = 10,5^2 + 6^2$$

$$RE^2 = 146,25$$
.

NRE est un triangle rectangle en R, d'après le théorème de Pythagore :

$$NR^2 = NE^2 - RE^2$$

$$NR^2 = 13,5^2 - 146,25$$

$$NR^2 = 36$$

$$NR = \sqrt{36}$$

$$NR = 6$$

Donc, NR a bien la même mesure que IE.

3) Aire du quadrilatère RIEN.

$$\mathcal{A}_{RIEN} = \mathcal{A}_{RIE} + \mathcal{A}_{RNE}$$

= 10,5 × 6 : 2 + $\sqrt{146,25}$ × 6 : 2
 $\approx 67,78$

Donc, l'aire de RIEN est d'environ 67,78 cm².