Grandeurs et mesures

I – Système International

Dans un passé pas si lointain, coexistaient de nombreuses unités qui n'avaient souvent que peu de rapports les unes avec les autres. Il a fallu attendre la révolution française pour qu'un premier système d'unités cohérent voit le jour : le système métrique.

En 1960 apparaît le Système International d'unités, le SI, qui comprend aujourd'hui deux classes d'unités :

- les unités de base
- les unités dérivées.

Cependant, ce système ne reste pas figé. Il est donc parfois nécessaire de faire évoluer les définitions des unités ou d'en introduire de nouvelles.

a) Les unités de base

A ce jour, le Système International d'unités, le SI, est constitué de sept unités de base.

Voici les trois unités utilisées en mathématiques au collège :

• longueur : le mètre (m)

• masse : le kilogramme (kg)

• durée : la seconde (s)

b) Les unités dérivées

Les unités dérivées sont nombreuses et viennent compléter les unités de base. Elles peuvent avoir des noms spéciaux (hertz, pascal, becquerel, ...) mais peuvent toujours être exprimées à partir des unités de base.

Parmi les unités dérivées, on trouve des grandeurs produits et des grandeurs quotients.

Quelques exemples courants:

• Grandeurs produits :

• Grandeurs quotients :

Le volume : m^3 Le débit : m^3 / s

Quantité d'énergie : kWh La vitesse : m.s⁻¹

Notation

Dans les grandeurs quotients, on utilise parfois les puissances négatives et la multiplication est remplacée par un point. Par exemple avec la vitesse exprimée en m / s. On peut écrire : $\frac{m}{s} = m \times \frac{1}{s} = m \times s^{-1} = m.s^{-1}$

II – <u>Cas particulier de la vitesse moyenne</u>

a) <u>Définition</u>

Un mobile suit un mouvement uniforme lorsque la distance d parcourue par un mobile est proportionnelle au temps t mis pour parcourir cette distance.

On a alors:
$$v = \frac{d}{t}$$
; $d = v \times t$; $t = \frac{d}{v}$.

Remarques

- Moyen mnémotechnique : la vitesse est exprimée en km / h, autrement dit $\frac{km}{h}$ soit $\frac{distance}{dur\acute{e}e}$
- On obtient les deux dernières égalités à partir de la première. On peut donc apprendre une seule formule.

b) Calculs

Usain Bolt parcourt 200 m en 19,78 s.

Calculer sa vitesse moyenne en m/s, au centième près.

Calculons.

$$v = \frac{d}{t} = \frac{200}{19,78} \approx 10,11$$

Donc, <u>la vitesse moyenne est de</u> 10,11 m/s.

Un piéton marche en ville à 120 m/min.

➤ Quelle distance parcourt-il en 12 min ?

Calculons.

$$v = \frac{d}{t}$$
 d'où 120 = $\frac{d}{12}$.

Ainsi : $d = 120 \times 12 = 1440$ Le piéton parcourt 1,44 km. Un cycliste roule sur un chemin montagneux à 30 km/h.

➤ En combien de temps fait-il 10 km?

Calculons.

$$v = \frac{d}{t} \text{ d'où } 30 = \frac{10}{t} .$$

t = 10: 30, soit 1/3 h = 20 min Le cycliste met donc 20 min.

c) Conversion

Pour convertir une vitesse, on procède par étapes. On gère la distance et la durée tour à tour.

➤ Convertissons 72 km/h en m/s

 $72 \text{ km/h} = 72\ 000 \text{ m/h} = 72\ 000 : 3600 \text{ m/s} = 20 \text{ m/s}$

On divise par 3600 car il y a 3600 s dans 1 h.

et

Deux amis quittent Nantes au même moment pour se rendre à Paris. Le premier fait, en TGV, le trajet Nantes-Paris d'une longueur de 375 km en 2 h 15 min. Le second utilise la voiture et fait le trajet Nantes-Paris, d'une longueur de 385 km par autoroute, en 3 h 45 min. On suppose que le mouvement des véhicules est uniforme.

➤ A quelle distance de Paris la voiture se trouve-t-elle lorsque le TGV arrive en gare de Paris ?

• $3 \text{ h} 45 \text{ min} = 3 \times 60 + 45 \text{ min} = 180 + 45 \text{ min} = 225 \text{ min}.$

D'où la vitesse moyenne :

$$v = \frac{d}{t} = \frac{385}{225} = \frac{77}{45}$$

La vitesse moyenne de la voiture est de 77/45 km/min.

• $2 \text{ h } 15 \text{ min} = 2 \times 60 + 15 \text{ min} = 120 + 15 \text{ min} = 135 \text{ min}$

$$\frac{77}{45} \times 135 = 231$$

La voiture a parcouru 231 km lorsque le TGV arrive en gare de Paris.

• 385 - 231 = 154

Donc, la voiture est à 154 km de Paris lorsque le TGV entre en gare.